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A recent paper [l] discussed the 2
-P

 bound (where p = n - k) for the probability of undetected error 

P(e) for an (n,k) block code used for error detection on a binary’ symmetric channel. This 

investigation is Since continued and extended and dual codes are studied. The dual and extension of a 

perfect code obey the 2
-P

 bound, but this is not necessarily true for arbitrary codes that obey the 

bound. Double-error-correcting BCH codes are shown to obey the bound. Finally the problem of 

constructing we obtain uniformly good codes is examined. 

 

1. INTRODUCTION: 

 Leung and Hellman (1976) examined the generally accepted rule that the probability 

of undetected error P() for an (n, k) block code, when used solely for error detection on a 

binary symmetric channel (BSC) with cross – over probability  < ½, is upper bounded by 2-

p, where p =  n – k is the number of parity – check bits.  They showed that this bound is not 

necessarily obeyed by linear, cyclic, or even BCH codes.  However, due to the very 

“uniform” distribution of their codewords in binary n-space, perfect codes do obey the bound.   

 Cheong Barnes and Friedman [1979] In this correspondence we extended the 

investigation in Hellman [1976] and take a close look at extended and dual codes.  several 

interesting results and proved, and counter examples are given to certain reasonable 

conjectures.  It is shown that double-error-correcting BCH codes obey the 2-p bound.  Codes 

which have small maximum P() on a BSC with any  between zero and one are discussed, 

and several classes of such codes are mentioned.   

 To be concise, we will refer to a code for which P() is monotonically increasing in , 

for 0    ½, as a proper code.  Otherwise, the code will be termed improper.  Note that 

when  = ½, P () = (2k - 1)/2n < 2-p, for any (n, k) code.  Thus a proper code always obeys  

the 2-p bound.   
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2. SOME CLASSES OF PROPER CODES: 

  In this section we examine certain commonly used codes to determine whether 

or not they are proper.  Unless otherwise stated, we assume  ½.   

 Proposition 1: Binary perfect codes are proper.   

 Proof: See Hellman [1976].   

 Proposition 2: Single parity – check codes are proper.   

 Proof: For a single parity – check code, n = k + 1.  Let Ai denote the number of 

codewords of weight i.  Then  
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 Substituting (2.2.2) into (2.2.1), and noting that  
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Differentiating P () with respect to , we have  
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    2

10if,0 
  

 Note from (2.6) that dP()/ d  0, for 0    1, if k is odd.  We shall make use of 

this fact later.  Also, if k is even, P () is maximized at = 2/3.   

 At this point, one might wonder if adding an overall parity check bit to a proper code. 

A little thought indicates that this is not necessarily true: suppose we start with a proper code 

and start adding overall parity bits. The first overall parity bit will increase by one the 

weights of all odd-weight codewords (if any) and leave the weights of even-weight 

codewords unaltered. Additional parity bits will not affect the weights of the codewords 

(which now all have even weight) and only increase the blocklength. In view of Lemma 1 

below, it is easy to see that an overall parity bit can convert a proper code consisting only of 

even-weight codewords into an improper one. 

 Lemma 1: If P () = i (1- )n – i, then P () is monotonically increasing for 0   

 i/n.   

 One might now ask if adding an overall parity-check bit to a proper code which 

contains odd-weight codewords yields an extended proper code.  This is not necessarily so.   

 Proposition 3: The extension of a proper code containing odd-weight codewords need 

not be proper.   

 Proof: Consider the linear code consisting of the four codewords {000000, 1100000, 

0011111, 1111111}.  The undetected error probability for this code is given by 

  P1() = 2 (1 - )5 + 5 (1 - )2 + 7,     …(2.7)  

and that of the extended code is  

  P2 () = 2 (1 - )6 + 6 (1 - )2 + 8.    …(2.7)  

It can be shown that P1() is monotonically increasing in , for 0    ½, whereas P2 () 

is not.   

  Proposition 4: Extended Hamming codes are proper.   

  Remark: An extended Hamming code is a Hamming code with an additional 

overall parity check bit.  It is commonly used to give the code the ability to detect double 

errors besides correcting single errors.   

  Proof: It is known Peterson [1972] that the weight enumerator for the extended 

Hamming code is  



 

Kamal Gupta  

 (Pg. 8190-8197) 

 
8193 

 

Copyright © 2017, Scholarly Research Journal for Interdisciplinary Studies 
 

 

  





n

0i

i
ixA)x(A

 

 
])x1()1n(2)x1()x1[(

n2

1 2/n2nn 
 …(2.9) 

where n = 2m, m = 2, 3, 4, …..   

  We can write P() in terms of the weight enumerator A (x) as follows:  
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Using (2.9) in (2.11) yields  
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Differentiating P() with respect to , we obtain. 
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To prove that dP()/d0, for 0   ½, it suffices to show that  

,0)21()1l2()21()1(l2)(f 1l1l21l2
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  …(2.14) 

where l  2 and 0    ½ .  The reader is referred to the Appendix for a proof of (2.14).   

 Remark: Since it is easily shown that repetition codes and the extended Golay code 

are proper, we conclude that all extended binary perfect codes are proper.   

 Proposition 5: Maximal length codes are proper.   

 Proof: Let us recall that a (2m – 1, m) maximal length code (parameterized by an 

integer m > 2) consists of the all-zero codeword and 2m – 1 codewords of weight 2m-1.  

Therefore 
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 …(2.15) 

From Lemma 1 it follows that dP()/d  0, for 0   ½.   
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 Considering the results obtained so far, one is led to a number of speculations about 

the properties of proper codes.  Since the single parity – check codes are the duals of the 

repetition codes, and the maximal length codes are the duals of the Hamming codes [1972], 

[1970], one might suspect the following.   

 Proof: It is known Bannett [1973] that the only binary perfect codes are  

1. The repetition codes with odd blocklength,  

2. The Hamming codes,  

3. The Golay (23, 12) code.   

 We have already shown that the duals of (1) and (2) are proper.  The dual of the 

Golay (23, 12) code has the generator polynomial g (x) = 1 + x2 + x5 + x8 + x9 + x10 + x11 

+ x12.  It is easy to show that this code is proper.  It is very tempting at this point to 

conjecture that the dual of a proper code is also proper.  Unfortunately this turns out not to be 

the case.  

 Proposition 7: The dual of a proper code is not necessarily proper.   

  Proof: Consider the following (15, 3) cyclic code with generator matrix   
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 This code consists of one codeword of weight 0, three of weight 5, three of weight 10, 

and one of weight 15.  Its undetected error rate is P() = 35 (1- )10 + 310 (1 - )5 + 

15, which does not increase monotonically with , for 0½. At =½,P()=72-15 = 

2.136  10-4, but at  = 1/3 say, P() = 2.21  10-4.  Thus the code defined by G is 

improper.   

 As proved in Lemma 2 below, the undetected error rate for the dual code is given by  

P() = 2-3 [1 + 3 (1 - 2)5 + 3 (1 - 2)10 +           (1 – 2)15 – 8 (1 - )15], which can be 

shown to be monotonically increasing for 0   ½.   

 Lemma 2: Let A (x) be the weight enumerator of any (n , k) linear code.  Then the 

probability of undetected error for the dual code, used solely for error detection on a BSC 

with crossover probability , is given by  

  P() = 2-k [A (1 - 2) – 2k (1 - )n].  …(2.16) 

 Proof: Let B (x) be the weight enumerator of the dual code.   



 

Kamal Gupta  

 (Pg. 8190-8197) 

 
8195 

 

Copyright © 2017, Scholarly Research Journal for Interdisciplinary Studies 
 

 

Then  

   

  .1
1

B)1(P n























  …(2.17) 

 We now make use of the Mac Williams identity [1972], [1970] 
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From (18),  
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Substitution of (2.19) in (2.17) yields (2.16).   

 Motivated by the fact that the codewords of double – error – correcting BCH codes 

are fairly uniformly distributed in binary n-space, we have been able to establish the 

following result.   

 Theorem 1: Double – error – correcting BCH codes are proper.   

 Remark: This theorem is established by showing that P() is monotonically 

increasing for 0    ½.  The proof is rather long and is available from the authors upon 

request.   

 We conclude this section with the conjecture that quasi-perfect codes obey the 2-p 

bound.   

 

3. UNIFORMLY GOOD CODES: 

 So far we have assumed that the cross-over probability of the BSC is not greater than 

½.  In this section, we examine some error detecting codes which perform well for any  

between zero and one.  One immediate observation to be made is that we cannot use a linear 

code which has the all-ones vector as a codeword, since than P() will be equal to one for  

= 1.   

 Definition: Let Ai denote the number of codewords of weight i in a certain code of 

blocklength n.  Then the code is said to have a symmetric weight distribution if  

   Ai = An-1,  0  i  n.    …(2.20) 

 The following result whose proof is straightforward will be useful in the sequel.   
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 Lemma 3: A binary linear code contains the all-ones vector if and only if it has a 

symmetric weight distribution.  

 We now prove a result which should be useful in finding uniformly good codes.   

 Proposition 8: Let n be odd.  Suppose we have a binary (n, k) code e with a symmetric 

weight distribution, and the undetected error probability of the code when used over a BSC 

with cross-over probability , 0   ½, is maximum at  = ½.  Consider the code e' 

constituting only of the codewords of e with weight less than n/2.  Then the probability of 

undetected error for code e' is upperbounded by  

  Pe () < 2-(n-k),  for 0   1.    …(2.21) 

  Remark: Code e' is not necessarily linear.   

 Proof: Let A' i(cj) denote the number of codewords in e' at distance i from cj.  Then 

the probability of undetected error (for a BSC with cross-over probability ) given that cj is 

sent is given by 
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where Ai is the number of codewords of weight i in e.  We have used Lemma 3 in (2.22).  

Inequality (2.23) follows since A' i(cj)  Ai.  Using (2.23) we observe that on a BSC with 

cross-over probability    (1 - ), 
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 From (23) and (26) we see that Pe' (cj) and Pe' (1-cj) are both bounded by 
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and hence Pe().  But Pe() <  2–(n-k),  0   ½.  Therefore  
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 Comments: Assuming n is odd, the rates of the codes e and e' are k/n and (k – 1)/n, 

respectively.  Proposition 8 shows that for certain codes, decreasing the rate by7 1/n results in 

a code with better P() for all , 0   1.   

4. CONCLUSION 

  Those codes (referred to as proper codes) which obey a commonly used bound 

on undetected error probability have been examined.  It has been shown that the duals and 

extensions of perfect codes are proper, but the duals and extensions of arbitrary proper codes 

need not be proper.  A class of codes called uniformly good codes were defined, and a 

method was suggested  for constructing them from well-known codes such as Hamming of 

BCH codes.  The search for other interesting classes of uniformly good codes is an area for 

further research.   
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